
Technische Universität München WS 2017/18
Institut für Informatik
Theoretical Computer Science

Fundamental Algorithms 8 - Solution Examples

Exercise 1 (Parallel Scalar)
Write a parallel program that computes the scalar product of two vectors (stored in two arrays). Discuss the
runtime complexity on the EREW PRAM model. How many processors can be used?

Solution:

Algorithm 1: ScalarSeq
Input: A: Array[1..n]

B: Array[1..n]
Result: Scalar product of A and B
res← 0;
for i = 1 to n do res← res + A[i] ·B[i];
return res;

Algorithm 2: ScalarPRAM
Input: A: Array[1..2k]

B: Array[1..2k]
Result: Scalar product of A and B
C ← Array[1..2k];
for i = 1 to 2k in parallel do C[i]← A[i] ·B[i];
for l = 1 to k do

for j = 1 to k − l in parallel do C[2lj]← C[2lj] + C[2lj + 2l−1];
end
return C[1];

In the first loop, n processors can be used, in the second one only at most 1
2n. The time complexity thus is

Θ(log n), as k = log n on n processors. The complexity remains Θ(log n) on 1
2n processors, since the first loop

could also be executed on 1
2n processors in Θ(1) runtime (with each processor executing two multiplications).

Exercise 2 (Parallel Vector)
Extend the program of exercise 1 to compute a matrix-vector product. Again, discuss the runtime complexity
on the EREW PRAM and state the number of processors that are used.

Solution:
Using n2 processors, the complexity of MatVecPRAM is Θ(log n) due to the complexity of ScalarPRAM.
Unfortunately, this implementation causes concurrent reads to X in ScalarPRAM, which works only
on CREW PRAM, not on EREW PRAM. Instead, one has to replicate X for each of the n calls to
ScalarPRAM, and then call ScalarPRAM for each copy.

For the first loop, MatVecEREW uses n processors in parallel to achieve Θ(1) runtime. The second one
is Θ(log n), using up to 1

2n2 processors and n parallel calls to ScalarPRAM (Θ(log n) each). Together, we
obtain an overall time complexity of Θ(log n) using at most n2 processors.

1



Algorithm 3: MatVecSeq
Input: M : Array[1..n, 1..n]

X: Array[1..n]
Result: Matrix-Vector-product of M and X
C ← Array[1..n];
for i = 1 to n do

C[i]← 0;
for j = 1 to n do C[i]← C[i] + M [i, j] ·X[i];

end
return C;

Algorithm 4: MatVecPRAM
Input: M : Array[1..2k, 1..2k]

X: Array[1..2k]
Result: Matrix-Vector-product of M and X
C ← Array[1..2k];
for i = 1 to n in parallel do C[i]← ScalarPRAM(M [i, 1..2k], X[1..2k]);
return C;

Algorithm 5: MatVecEREW
Input: M : Array[1..2k, 1..2k]

X: Array[1..2k]
Result: Matrix-Vector-product of M and X
C ← Array[1..2k];
X ′ ← Array[1..2k][1..2k];
for i = 1 to 2k in parallel do X ′[1, i]← X[i];
for l = 1 to k do

for j = 1 to k − l in parallel do
for i = 1 to n in parallel do X ′[2lj, i]← X ′[2lj − 2l−1, i];

end
end
for i = 1 to n in parallel do C[i]← ScalarPRAM(M [i, 1..2k], X[1..2k]);
return C;

Exercise 3 (Parallel Optimization)
Given the following parallel algorithm PrefixPRAM for prefix multiplication (with EREW-PRAM). First,
argue why the algorithm is correct. Then, assume that the j-loop is changed to a sequential loop. State why
the resulting algorithm now no longer is correct and suggest how to change the j-loop to obtain a correct
sequential implementation.

Solution:
The parallel loop works correctly, because all tmp[j] are assigned their value at the same time, i.e. before
these values are copied to the A[j]. When the j-loop of the program is changed to a sequential loop, then
A[j − 2l] is already changed to its new value when A[j] is updated. We obtain a correct implementation if
the j-loop is executed in reverse order, or if the j-loop is split into two loops: the first loop to compute all
tmp[j], and the second loop to update the A[j].

2



Algorithm 6: PrefixPRAM
Input: A: Array[1..2k]
tmp← Array[1..2k];
for l = 0 to k − 1 do

for j = 2l + 1 to n in parallel do
tmp[j]← A[j − 2l];
A[j]← tmp[j] ·A[j];

end
end

3


