Technische Universitat Miinchen WS 2017/18
Institut fiir Informatik
Theoretical Computer Science

Fundamental Algorithms 8 - Solution Examples

Exercise 1 (Parallel Scalar)

Write a parallel program that computes the scalar product of two vectors (stored in two arrays). Discuss the
runtime complexity on the EREW PRAM model. How many processors can be used?

Solution:

Algorithm 1: SCALARSEQ
Input: A: Array|[l..n]
B: Array[l..n]
Result: Scalar product of A and B
res < 0;
for i =1 to n do res < res + Ali] - B[i];
return res;

Algorithm 2: SCALARPRAM

Input: A: Array[1..2¥]
B: Array[1..2"]
Result: Scalar product of A and B
C < Array[1..2"];
for i = 1 to 2* in parallel do C[i] + A[i] - B[i];
for | =1 to k do
for j =1 to k — 1 in parallel do C[2'j] < C[2!5] + C[2!j + 2'71;
end
return C[1];

In the first loop, n processors can be used, in the second one only at most %n The time complexity thus is
O©(logn), as k = logn on n processors. The complexity remains ©(logn) on %n processors, since the first loop
could also be executed on %n processors in ©(1) runtime (with each processor executing two multiplications).

Exercise 2 (Parallel Vector)

Extend the program of exercise 1 to compute a matrix-vector product. Again, discuss the runtime complexity
on the EREW PRAM and state the number of processors that are used.

Solution:
Using n? processors, the complexity of MATVECPRAM is ©(logn) due to the complexity of SCALARPRAM.
Unfortunately, this implementation causes concurrent reads to X in SCALARPRAM, which works only
on CREW PRAM, not on EREW PRAM. Instead, one has to replicate X for each of the n calls to
SCALARPRAM, and then call SCALARPRAM for each copy.

For the first loop, MATVECEREW uses n processors in parallel to achieve O(1) runtime. The second one
is ©(logn), using up to 3n? processors and n parallel calls to SCALARPRAM (O(logn) each). Together, we
obtain an overall time complexity of ©(logn) using at most n? processors.

Algorithm 3: MATVECSEQ
Input: M: Array[l..n,1..n]
X: Array[l..n]

Result: Matrix-Vector-product of M and X
C < Array[l..n];
for i =1 ton do

C[i] + 0;

for j =1 to n do C[i] « C[i] + M[i, j] - X[i];
end
return C;

Algorithm 4: MATVECPRAM
Input: M: Array[1..2% 1..2%]
X: Array[1..2]
Result: Matrix-Vector-product of M and X
C <« Array[1..2%];
for i = 1 to n in parallel do C[i] < ScalarPRAM(M[i, 1..2%], X[1..2%]);
return C;

Algorithm 5: MATVECEREW

Input: M: Array[1..2% 1..2%]
X: Array[1..2¥]

Result: Matrix-Vector-product of M and X
C < Array[1..2¥];
X'+ Array[1..2¥][1..2%];
for i = 1 to 2* in parallel do X'[1,i] < X]i];
for /=1 to k do

for j =1 to k —1[in parallel do

for i = 1 to n in parallel do X'[2'5,i] + X'[2!j — 2!=1 4];
end

end
for i = 1 to n in parallel do C[i] < ScalarPRAM(MT[i, 1..2%], X[1..2%]);
return C;

Exercise 3 (Parallel Optimization)

Given the following parallel algorithm PREFIXPRAM for prefix multiplication (with EREW-PRAM). First,
argue why the algorithm is correct. Then, assume that the j-loop is changed to a sequential loop. State why
the resulting algorithm now no longer is correct and suggest how to change the j-loop to obtain a correct
sequential implementation.

Solution:

The parallel loop works correctly, because all tmp[j] are assigned their value at the same time, i.e. before
these values are copied to the A[j]. When the j-loop of the program is changed to a sequential loop, then
A[j — 2'] is already changed to its new value when A[j] is updated. We obtain a correct implementation if
the j-loop is executed in reverse order, or if the j-loop is split into two loops: the first loop to compute all
tmplj], and the second loop to update the A[j].

Algorithm 6: PREFIXPRAM

Input: A: Array[1..2%]
tmp < Array[1..2%];
for|=0to k—1do
for j = 2! + 1 to n in parallel do
tmplj] Alj — 21);
ALj] < tmplj] - ALj);
end
end

