Fundamental Algorithms 8 - Solution Examples

Exercise 1 (Parallel Scalar)

Write a parallel program that computes the scalar product of two vectors (stored in two arrays). Discuss the runtime complexity on the EREW PRAM model. How many processors can be used?

Solution:

```
Algorithm 1: SCALARSEQ

Input: A: Array[1..n]

B: Array[1..n]

Result: Scalar product of A and B

res \leftarrow 0;

for i = 1 to n do res \leftarrow res + A[i] \cdot B[i];

return res;
```

Algorithm 2: SCALARPRAM

```
Input: A: Array[1..2<sup>k</sup>]

B: Array[1..2<sup>k</sup>]

Result: Scalar product of A and B

C \leftarrow \text{Array}[1..2^k];

for i = 1 to 2^k in parallel do C[i] \leftarrow A[i] \cdot B[i];

for l = 1 to k do

for j = 1 to k - l in parallel do C[2^l j] \leftarrow C[2^l j] + C[2^l j + 2^{l-1}];

end

return C[1];
```

In the first loop, n processors can be used, in the second one only at most $\frac{1}{2}n$. The time complexity thus is $\Theta(\log n)$, as $k = \log n$ on n processors. The complexity remains $\Theta(\log n)$ on $\frac{1}{2}n$ processors, since the first loop could also be executed on $\frac{1}{2}n$ processors in $\Theta(1)$ runtime (with each processor executing two multiplications).

Exercise 2 (Parallel Vector)

Extend the program of exercise 1 to compute a matrix-vector product. Again, discuss the runtime complexity on the EREW PRAM and state the number of processors that are used.

Solution:

Using n^2 processors, the complexity of MatVecPRAM is $\Theta(\log n)$ due to the complexity of ScalarPRAM. Unfortunately, this implementation causes concurrent reads to X in ScalarPRAM, which works only on CREW PRAM, not on EREW PRAM. Instead, one has to replicate X for each of the n calls to ScalarPRAM, and then call ScalarPRAM for each copy.

For the first loop, MATVECEREW uses n processors in parallel to achieve $\Theta(1)$ runtime. The second one is $\Theta(\log n)$, using up to $\frac{1}{2}n^2$ processors and n parallel calls to ScalarPRAM ($\Theta(\log n)$ each). Together, we obtain an overall time complexity of $\Theta(\log n)$ using at most n^2 processors.

Algorithm 3: MATVECSEQ

```
Input: M: Array[1..n, 1..n]
X: Array[1..n]
Result: Matrix-Vector-product of M and X
C \leftarrow \text{Array}[1..n];
for i = 1 to n do
C[i] \leftarrow 0;
for j = 1 to n do C[i] \leftarrow C[i] + M[i,j] \cdot X[i];
end
return C;
```

Algorithm 4: MATVECPRAM

```
Input: M: Array[1..2^k, 1..2^k]
X: Array[1..2^k]
Result: Matrix-Vector-product of M and X
C \leftarrow \text{Array}[1..2^k];
for i = 1 to n in parallel do C[i] \leftarrow \text{ScalarPRAM}(M[i, 1..2^k], X[1..2^k]);
return C;
```

Algorithm 5: MATVECEREW

```
Input: M: Array[1..2^k, 1..2^k]
X: Array[1..2^k]
Result: Matrix-Vector-product of M and X
C \leftarrow \operatorname{Array}[1..2^k];
X' \leftarrow \operatorname{Array}[1..2^k][1..2^k];
for i=1 to 2^k in parallel do X'[1,i] \leftarrow X[i];
for l=1 to k do
for j=1 to k-l in parallel do
for i=1 to n in parallel do X'[2^lj,i] \leftarrow X'[2^lj-2^{l-1},i];
end
end
for i=1 to n in parallel do C[i] \leftarrow \operatorname{ScalarPRAM}(M[i,1..2^k], X[1..2^k]);
return C;
```

Exercise 3 (Parallel Optimization)

Given the following parallel algorithm PREFIXPRAM for prefix multiplication (with EREW-PRAM). First, argue why the algorithm is correct. Then, assume that the j-loop is changed to a sequential loop. State why the resulting algorithm now no longer is correct and suggest how to change the j-loop to obtain a correct sequential implementation.

Solution:

The parallel loop works correctly, because all tmp[j] are assigned their value at the same time, i.e. before these values are copied to the A[j]. When the j-loop of the program is changed to a sequential loop, then $A[j-2^l]$ is already changed to its new value when A[j] is updated. We obtain a correct implementation if the j-loop is executed in reverse order, or if the j-loop is split into two loops: the first loop to compute all tmp[j], and the second loop to update the A[j].

Algorithm 6: PrefixPRAM

```
Input: A: Array[1..2^k]

tmp \leftarrow \text{Array}[1..2^k];

for l = 0 to k - 1 do

for j = 2^l + 1 to n in parallel do

tmp[j] \leftarrow A[j - 2^l];

A[j] \leftarrow tmp[j] \cdot A[j];

end

end
```